
SUMMARY 
/ 0 7  r5’ 

/ A theoretical investigation is made of the axisymmetric snapthrough 

kuckling of a shallow cone subjected to an idealized impulse applied 

uniformly over the surface of the shell. 

the strain energy of the shell at a time when the displaeement of the 

shell is a maximum (i.e., the velocity is zero). 

this equilibrium position becomes unstable and the shell can snap-through 

(or buckle ). 

The work is based on a study of 

Under certain conditiocs 1 
Nonlinear strain-displacement equations are used and solutions 

are obtained for clamped and simply supported boundaries at the edge of the 

shell. Results for the cone are compared with similar results for a 

shallow spherical cap having the same rise as the cone. 

indicates that the sphere can resist a larger impulse than the cone before 

This comparison 

/4 V T H  ovz buckling. 
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is nany engineering problems. In the aerospace field, for example, the 

l G a d S  oil missiles z*; launching and staging are cases where the principal 

fclrces are dp-mic aCd where buckling can be the mode of failure. Unfor- 

t. .i--,dtely ,". c dynamic buckling is a much more difficult problem than is static 

buckling. Not only is there the added time parameter but also it is not 

yet clear what is meant by dynamic buckling and what constitutes a reasonable 

failure criteria. 

bee3 used in an attempt to treat the problem. 

As a result of this situation numerous techniques have 

A recent and useful method for studying dynamic buckling problems is 

orie sugcested by Humphreys and Bodner in references 1 and 2 and described 

ir, detail below. 

of a shell subjected to an initial idealized impulse; however, it can be 

The method is limited to the snapthrough buckling problem 

very useful for this class of problems. 

It is the purpose of this paper to apply the method of Humghreys and 

Bodner to the axisymmetric snapthrough buckling of a shallow cone subjected 

to an idealized impulse applied uniformly over the surface of tne shell. 

A solution is obtained for laterally restrained boundaries for both the 

sin2ly supported and fixed cases. Solutions are also obtained for a rather 

unusual set of boundary conditions called "stress free", where both the 

horizontal and circumferential stresses are assumed to vanish. 

latter boundary conditions the analysis is simplified and results for the 

With these 

coue can be compared with similar results given in reference 1 for the 

shallow sphere. 
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METHOD OF APPROACH 

In treating the problem of the snapthrough buckling of a shell 

subjected to an impulse,it is assumed that the load is distributed uniformly 

over the structure. 

considers2 to be removed before the shell has begun to move. 

therefore trxsmits a uniform initial velocity to the structure; that is, 

it represents an input kinetic energy. 

the displacement of all points on the shell has reached a maximum and the 

velocity of these points is zero 

can be deternined from a study of the equilibrium state at time t 

time the internal strain energy of the shell must be equal to the initial 

kinetic energy because of conservation of energy. 

Furthermore, since the load is an impulse it caii Zc 

This impulse 

At some later time, t (not determined), 
i+ ;S ~ ~ u n i . 4  +kt 1 

kcace +ha sl,.rj m&;b:-CI ClU. e h h r F I c 4 e f m f  a& IC +& m e  04 
The snapthrough of t%e stdcture 

Jfi $E% 
At this 1' 

From asstudy of the strain 

energy &time t one can then determine the initial kinetic energy required 1' 
to cause the aotion of the shell to exhibit a large jump. 

defined as the point of snapthrough or "buckling". 

"his jump is then 

A Gualitative plot of the strain energy versus deflection of the 

structure is shown in figure 1. 

herein is that the strain energy of the shell must decrease 
4i+h t.kcuy6sc ;+ -on; --* deC/eo+ro;? . 

when sna&p-through occurs the strain energy at maximum displacement must be 

A requirement for "buckling" as defined 

. Consequently, 

a relative maximum with respect to the maximum dispxacement. 45ms-at 
0 ,  .-. 2 ,  

V I  LuaAibL VL UIF: ~ L , L ~ ~  m e  

An alternate explanation of the snapthrough criteria is to note that 

the initial kinetic energy is equal to the strain energy at the maximum 

displacement w Hence, the maximum displacement can be regarded as a P 
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funct ion of  t h e  i n i t i a l  input  veloci ty .  When t h e  s h e l l  snaps through 

the re  i s  a sudden increase i n  m a x i m u m  displacement w i t h  respec t  t o  ii 

change i n  i n i t i a l  ve loc i ty .  Tne condition f o r  soapthrough i s  the re fo re  

o r  

dv 

GOVE€tiiIISG EQUATIONS 

The problem t o  be considered i s  t h a t  of a shallow cone subjected t o  

axisymmetric deformations. The cone has a height  H, an ex te rna l  rad ius  b, 

and thickness  t. !I!he rad ius  t o  a p o i n t  on t h e  middle surface i s  r ( see  f i g .  

a m a x i m u m  and t he  ve loc i ty  i s  zero can be exprewed as t h e  sum of t h e  contr i -  

but ion due t o  membrane effects vm and bending e f f e c t s  
4 b' 

Thus 

- - -  
( l a )  v = vm + Vb 

where 
. -- 

. 1 
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Here E and K1, K are, respectively, the extensional strains and 1' 2 
curvatures in the radial and circumferential direction. 

is denoted by E, Poisson's ratio by p, and the shell stiffness by D = 

Young's modulus 

E t 3  

1 2 0  - P2) 
The strain energies can be nondimensionslized as 

where 

resulting in 

and 

with 

- 
v =  , etc. 

2flH2tE 

- . 

rod ta 1 C The usua l  stress-strain relations taken for the  and ve&aaa& 
tm p b t c  

stresses are, respectively % 



skcl l o d  
The nonlinear strains far axfswpmetric deformations of  thebcone are taken 

U E2 = - r 

! 

where u and w are t he  def lec t ions  i n  the  hor izonta l  ( r )  and v e r t i c a l  ( z )  

d i rec t ions ,  respect ively,  and the  s u b s c r i p t  r denotes d i f f e r e n t i a t i o n  with 

r e spec t  t o  r. 

The com;eatibility re la t ionship  between t h e  s t r a i n s  becomes, t he re fo re  

d U  
JE If the ve loc i ty  i n  the  r d i rec t ion  i s  neglected, t he  equation of 

y r d \ a l  

(3a) t o  give 

equilibrium can be obtained from the  f i rs t  v a r i a t i o n  of  equation 

( 8 )  
d 
-(Tu ) - u2 = o cr 1 

Equations ( 5 )  and (6 )  can be used t o  wr i t e  equatior, (8)  giving 
CI 
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Taking account of equation (8)  it can be shown t h a t  t h e  foliowing usefu l  
. .  

identity e x i s t s  between the  s t r e s ses  and s t r a i n s .  

i 

It i s  e s smed  t h a t  the  she l lundergces  aa i n i t i a l  uniformly d i s t r i b u t e d  

ve loc i ty  &de t o  ac impulse per  uni t  area 7. 
can therefore  be r e l a t e d  t o  t h e  implse by 

The i n i t i a l  k ine t i c  energy To 

i 

where p i s  the mass dens i ty  of the s h e l l .  

A t  some l a t e r  t i m e ,  tl’ tiiez tne  ve loc i ty  i s  zero and the  displacement 

has reached a m a x i m l m  t h e  s t r a i n  energy a a t  t 

k i n e t i c  energy. H a c e  

i s  equal  t o  the  i n i t i a l  1 

i 

! 

Nondimensionalizing according t o  equations (2), t h e r e  r e s u l t s  

4 b X ’  v = 4b&(V,  4Vb) 

1 (13) I=- 
2 - 2 

where 

I 

b 
a rocdimsnsional im2ulse parameter and where V 

eqLstions (3.) and (3b). 

and V a r e  given by 
m b 
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R I G I D  BOIJKDARY t 

Consider f irst  the  problem where t h e  edge of  the she l l  a t  r = b i s  

resti-aliied f r c m  hor:znrt.al movement ( r i g i d ) ,  i.e., 

Tne cethod of  approach i s  t o  itssume a v e r t i c a l  de f l ec t ion  w(r)  and t o  

determine the impulse I given by equation (13) i r ?  t e r m  of t h i s  def lec t ioo .  

Zie irnpulse has  been shown t o  be r e l a t e d  to the  s t r a i n  energy which i s  a 

f 

funct ion of  both t h e  l a t e r a l  displacement u as well  as w. 

displacement u can be determined f o r  2. known w by in t eg ra t ing  the  equation 

of ho r i zon ta l  equilibrium, equation (g), together  w i t h  the boundary con- 

d i t i on ,  equation (14), and the  f a c t  t h a t  u = 0 a t  r = 0. 

the  i n i t i a l l y  aps l i ed  impulse I i s  express ib le  i n  terms of  only w, t h e  

maximum displacement. 

determined by d i f f e r e n t i a t i n g  I w i t h  respec t  t o  w. 

The l a t e r a l  

Consequently, 

The impulse required f o r  snapthrough can then be 

i 

An approximate so lu t ion  f o r  the  maximm def lec ted  shape can be taken 

as 

! 
t m r e  w and a are constants .  

s e t i s f i e d  by a proper choice o f  a, i.e. 

The boundary conditions a t  r = b may be 
0 

Clamped Edge: wr = 0, a = l  

Simply Supported: M1 = -D(Kl + pK2) = 0, a=- l + Y  
5 + P  

'The shape given by equation (15) correspords t o  the  shape taken by a 

c i r c u l a r  p l a t e  subjected t o  a uniform lateral load and supported a t  the 

boundary. 
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By subs t i t u t ing  ea_uation ( 1 5 )  i n t o  ea_uation (13) and taking account 

of equation ( 9 )  and t h e  a g r o p r i a t e  boundery condi t ions on u there  r e s u l t s  

a f t e r  S G ~ ?  e f f o r t  and w i t h  p = 0.3 

1. For t h e  Sigid  C1w.ged Edge ( w  / = u / ~ = ~  = 0, a = 1) 
r r=b  

I = Lx4[o.1151~~~0 4 - 0.363311~~ + w (0.2876 + 7*;3371 (16)  
A 0 

2. For t h e  Eigid Simply Supsorted 3dge (Ml/r=b = u / ~ = ~  = 0, a = 0.24528) 

4 3 2*0767 )I (17) I = 4h ' 0 . 1 5 2 7 ~ ~  - 0 . 4 5 9 9 ~ ~  + wo2\/0.34€35 + 4 7  
7- I 

The condition f o r  snapthrough i s  

Czrrying out  t he  d i f f e r e n t i a t i o n  and taking t h e  smaller roo t  of the r e s u l t i n g  

quadrat ic  i n  w y i e lds  
0 

1. Clamped Edge 

30.98755 
h2 

2. S i q l y  Supported Edge 

w = 1.12942 -\/0.13446 - ,T 6.79993 
0 

1 h 

It should be noted t h a t  a t  ce r t a in  values of h t h e  m p l i t u d e  w becomes 
0 

imaginary. A t  such values of X there  i s  no real w which correspond t o  t h e  
0 

snzp th rough  condition. The physical i n t e rp re t a t ion  of imaginary values  of 

wo would appear t o  be t h a t  t h e  s h e l l  does not  exh ib i t  a snapping shenomenon 

and t h e  notion i s  a snooth c s c i l l a t o r y  rcotion. 

corresponding t o  real  wo are 

The minimm values of A 

-- ------ II__ 
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1. C l a q e d  Edge 

i . e . ,  f o r  p = 0.3, 

2 Sirr?l y Suscorted 

i.e., f o r  p = 0.3, 

Thus, f o r  e x z q l e ,  i n  the c8se of 8 c o x  with a r i g i d l y  f ixed boundary 

sz~-p-?Air~r.zh buckling does not occ ' x  unless  t h e  rise of t he  cone H exceeds 

4.34t. 

A 2 l o t  of equations (16) acd (17) tak izg  account o f  equations ( 1 9 )  

It should be noted t h a t  a s l i g h t  change and (20) i s  given i n  figure 3. 

in ,narzceters has Seen used i n  the p l o t  i n  order t o  make some comparison 

v i t h  the  previously published r e s u l t s  f s r  a sphere. The modified parameters 
1 * 

a r e  A an& I where 

-2 4 2 
0 1 -  I b 12(1-~ ) 

Ep t 4H2 
I =-2- - 4A 

i 

t 
Figure 4 gives a p l o t  of h versus t h e  m8x,.um c r i t i c a l  def lec t ion  t o  

thickness  r a t i o  which e x i s t s  a t  the t h e  of buckling. 

magnitude of t h i s  c r i t i c a l  def lec t ion  shows t h a t  i t s  value i s  of t h e  order  

0 of  t h e  r ise  of t h e  cone. 

case i s  0.840 and O.eO5, respectively.  

A study of  t h e  

W 1 
In f a c t  f o r  k = 7.75 and 11.0, - f o r  t h e  clamped H 

! 

STRESS-FREE EOUNDARY 

Tie e f f o r t  required t o  obtain the  impulse i n  terms of an a s s m e d  

aisplacenent  c m  3e reduced considerably i f  a r a the r  unusual set of boundary 
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" s t r e s s  f r ee"  and correspcnd t o  the case vh,ere 

With t h e z e  conditions it can be shorn tha% !." 

/ 

'ressary t o  solve f o r  

u i n  t e r z s  o f  w. 

l % h  t hese  boiizdary cGnditlons nay not  mpear r e a l i s t i c ,  t he  way i n  

which they simplify the  calculat ions makes - --fhy of  consideration. 

They were also t r e a t e d  f o r  similar reasoL, _-. ~ - . - ~ - e x e  1 f o r  the  sphe r i ca l  

c q  and, conscqxzntly, a r e  of i n t e r e s t  here  i n  order  t o  compare the  r e s u l t s  

for t he  coce :.nth those of the  sphere. 

The nezhrane s t r a i n  energy eq ia t ion  ( 3 ~ )  can also be w i t t e n  i n  terms 

of t h e  s t r e s s e s  z s  

Tie product term ala2 in equation (24) makes no contr ibut ion t o  the 

e:iergy fo r  t h e  s t ress-free boundary a t  b as i s  shown below. Using equation 

( 8 )  t he re  r e s u l t s  

In t eg ra t ing  over t he  l i m i t s  of r yie lds  

Consequently, equation (24)  can be wr i t t en  as 

--I- - -.-. 
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Also f i -on t he  z s q a t i b i l f t y  e q ~ i t . i ~ ? n  ( 7  together  with equation ( 10) 

it can be shown t h a t  

In tegra t ing  equation ( 2 7 )  from r t o  b and considering the  stress-free 

b o u n b r y  conditions (ea_. ( 2 3 ) )  y ie lds  

?rea eqEation (28) the  lcembranc energy eGuation (26)  can now be ex2ressed 

i n  te-ms OZ only the  v e r t i c a l  def lec t ion  w as  follows 

where x i s  e clwzy var iab le  of integrat ion.  

P.gzi9 a s s m b g  w t o  be in the  fo-rm of eqxation (15)  and tak ing  account 

of equation ( 2 9 )  i n  equation (13) t h e  nondimensional impulse parameter I 

becomes with p = 0.3. 

1. Clamped Stress-Free Edge wr = Ul - - a2 = 0, a = l  
-r 

50333] ( 3 0 )  
h2 

0.063QwO 4 - 0.~98~7w~~ + w 
0 

2. Simply Supported Stress-Free Edge (M1 = u1 = u2 = 0, a = 0.24528) 
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I 

The corresponding c r i t i c a l  def lec t ions  at  snapthrough buckling together  

-&th t he  l i m i t s  on X a r e  

1. Clmped Stress-Free Edge 

w = 1.17045 -’/0.14496 - 42 

h 0 

kmin = 17.0216 

H > 5.16t 

2. Sk i s ly  Sup2orted Stress-Free E d ~ e  

12.0e078 w = 1.1544 -j/0.1334 - 
y h2 0 

hmin = 9.516 

H > 2.88t 

(33) 

t 
Plots  of t he  modified c r i t i c a l  irn$ulse I versus t h e  modified s h e l l  

0 [ 22) L?flO’’l/gie3 
parameter X defined by equations A are given i n  f igu re  3. Figure 4 

shows a p l o t  of  the amplitude of the c r i t i c a l  def lec t ion  versus X . t 

DISCUSSION OF RESULTS 

It 1 _- ,̂ . i n t e re s t ing  t o  note i n  f igure  3 t h a t  f o r  r e l a t i v e l y  l a rge  values 

of h the  s t r ecg th  of t h e  simply su;?ported s h e l l  i s  g rea t e r  than the  f ixed  

czse. On t he  o ther  hand for small values o f  h where the  rise of t he  cone 

i s  q u i t e  small, the  reverse  e f f e c t  occurs. These r e s u l t s  would seem t o  

ind ica t e  t h a t  f o r  high rise cones ( r e l a t i v e l y  speaking) where t h e  membrane 

s t r e s s e s  are important, t he  more f l ex ib l e  the  s h e l l  t i e  s t ronger  it i s  t o  

resist dynamic e2fects .  In  the  case of small rises where t h e  cone i s  very 



nearly a plate the  major s t rength  cores from the  boundsry condi t ions and 

the  bending r i g i d i t y  of t he  she l l .  In  t h i s  case the r i g i d  boundaries are 

22 a i d  t o  the  d p m i c  s t rength  o f  t h e  s h e l l .  

The first  e f fec5  $as beec noted previously by dumphreys ana Bodner 

( ~ 3 ; ’ .  1 ) f o r  long cy l ind r i ca l  parels t he re  the  simgly s q p o r t e d  pznels  

exhib i ted  a g rea t e r  r e s i s t acce  t o  s r ap th rough  than did claxped panels.  

T2e r e v e r s a l  i n  the  r s i a t i v e  s t rengths  f o r  t h e  tm boundary cocdi t ions  

vhich OCCIXS f o r  the  very shallow cones, hovever, d i d  not  occur f o r  t h e  

l c q  c y l l r d r i c a l  panels. 

It is a l s o  of i n t e r e s t  t o  compare the  behavior of  a shallow cone with 

sphere of comparable geonetry. In order t o  make t h i s  I 

necessary t o  express the  sphere parameter i n  terms of  t h e  

using the  approxinate r e l a t i o m  appropriate f o r  a shallow 

dme aad f igures  5 and 6 show the  r e s u l t s  f o r  conpzrable 

kx:ic?ary conditions.  Tne spher ica l  r e s u l t s  were taken from f igu res  6 and 7 
I of reference 1. Ir, Zeneral, f igure  5 shows t h a t  f o r  a conical  o r  sphe r i ca l  

s h e l l  of the  SZL~” rise 11, the  s t ronger  s t r u c t u r e  t o  r e s i s t  dynvnic buckling 

i s  the  s$~ere .  

, 
i 

Figure 6 ind ica tes  t h a t  a t  buckling the  sphere has a lso , 

maergone a larger de f l ec t ion  than t h e  c o n p m h 1 e  cone. 

A f i n s 1  ccmen t  should be made v i t h  respec t  t o  the accuracy of  t h e  

p re sen t  results. The tvo major sources o f  e r r o r  l i e  i n  the choice of a L 

single degree of freedom for  the def lec ted  shape and .the reyirerr ,ent  t h a t  

t h e  cone deform axisyimetr ical ly .  Both of  t hese  e f f e c t s  become more importar t  

15 th  increas icg  shell rise and the la t ter  effec+, vould seem t o  be the more 

i q o r t a n t  of t he  two. I n  view of  these  e f f e c t s  the  r e s u l t s  given herein 
: 

a r e  inzdecxz‘ie f o r  h beyocd about 10; however, they may be usefvll as 



4 

i . .  . . .  
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q u a l i t a t i v e  data beyocd: that range. It should also be noted t h a t  it was 8 

z’r.oTm ir, rc:m-e:rLce 3 th-t t h e  resu l t s  o f  2 sizzle degree of freedom a p p o x i -  

r:s.t.i~z for E c?L~.l lp: .  g - . h ~ r e  !.:.r.c,nnserv.i.t,’.ve for larse . T t  seem reason- t 

.L----- 

ab le  t o  e;.,?ct the  sane q w l i t a t i v e  behsvior t o  hold f o r  t h e  shallow cone. 

! 

Tfie ?,ri%?r vould l i k e  t o  express q n r e c i a t i o n  for  the  work o f  Miss Kancy 

?o:?ell, Slntl-Aeretician, XASA Langley Research Cezter, who ca r r i ed  out  a 

1rr~:e por t io2  of  the  ce i cu i s t iocs  i n  t h i s  study. 

i 

! 

I 
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